νιωεν

Passion for Technology

Shape Memory Alloy Materials for Space and Aeronautics

Marcelo Collado (mcollado@arquimea.com)

Francisco Gutiérrez (fgutierrez@arquimea.com)

Our Mission to Deliver Useful Technology Everywhere

COMPANY OVERVIEW

Arguimer ³Passion for Technology

SHAPE MEMORY ALLOYS

Shape Memory alloys are metallic materials can remember their form and return to its form after deformation, depending on the temperature nad mechanical stress, with two main effects:

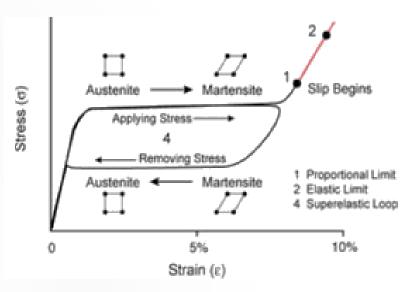
- Shape Memory
- Superelasticity.

SHAPE MEMORY ALLOYS Shape Memory effect

	Step	Temperature changes*	Material phase	Example 1 (lateral deformation)	Example 2 (longitudinal deformation)				
	1	High (> Ţſ)	Austenite	Original form. The material opposes to be deformed	Original length. The material opposes to be stretched L				
	2	Low (<Ţf)	Martensite	The material can be easily deformed	The material can be easily stretched L → f→ L+I →				
	3	High (>Ţƒ)	Austenite	The material returns to its original form an opposes to be deformed F↑ _(F >> f)	The material returns to its original length an opposes to be stretched L+I E ← L ← F				

*There is a hysteresis factor to be considered ($\underline{\text{Tf}} \underline{\text{As}} \rightarrow \text{Ma} < \underline{\text{Tf}} \underline{\text{Ma}} > \text{Au}$)

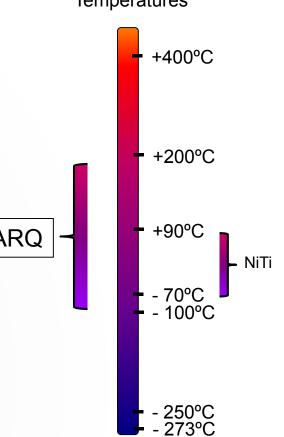
ΛΓΟυίπελ


SHAPE MEMORY ALLOYS Superelasticity

Step 1	Mechanical stress No Mechanical stress	Material phase Austenite	Example 1 (lateral deformation) Original form. The material opposes to be deformed	
2	Mechanical stress	Martensite	The material is deformed by a mechanical stress F↓	
3	Stop mechanical stress	Austenite	The material returns to its original form	

SHAPE MEMORY ALLOYS Superelasticity

SHAPE MEMORY ALLOYS **ARQUIMEA'S HIGH TEMP SMA (SMARQ)**


Transformation Temperatures

- Innovation: SMARQ – Novel SMA material: Extended operation temperature range **SMARQ** Proprietary technology and production
 - Rods

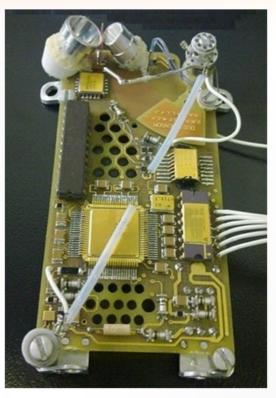
processes.

(up to 180°C).

- Plates
- Fibers (from 10um up to any size)
- Fancy geometries

SHAPE MEMORY ALLOYS SPACE APPLICATIONS

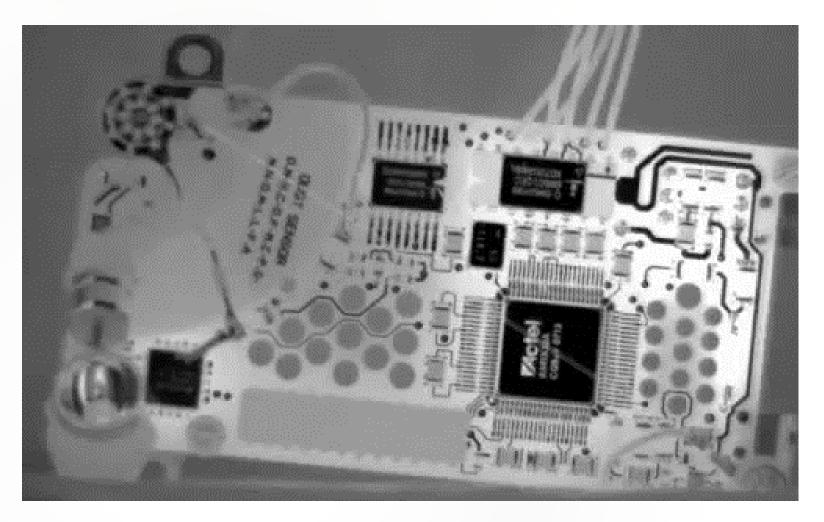
ROTARY ACTUATORS


PIN PULLERS

HDRM

PROPULSION VALVES

SMART STRUCTURES FOR DEPLOYMENT



ROTARY ACTUATORS

SPACE APPLICATIONS Rotary actuators

SPACE APPLICATIONS Rotary actuators

PIN PULLER

One shot

Non-explosive

Low shock

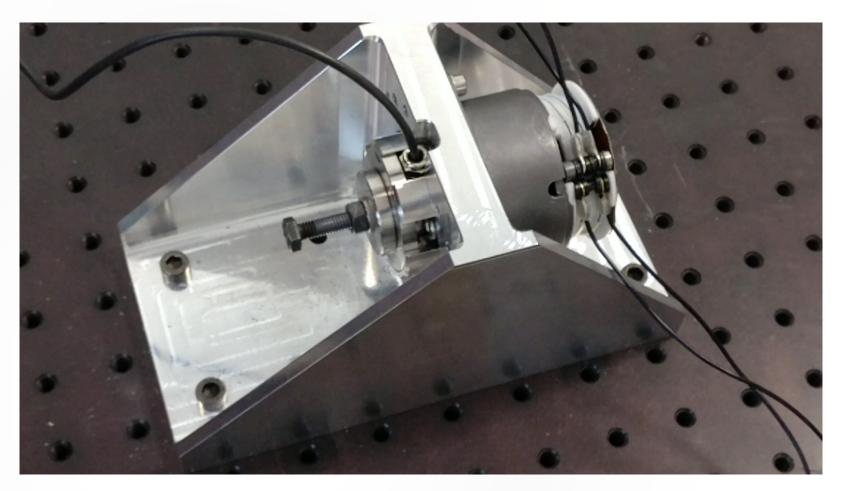
Fully resettable by user

EM to TRL6 ing Redesign 0.2019

SPACE APPLICATIONS Pin puller

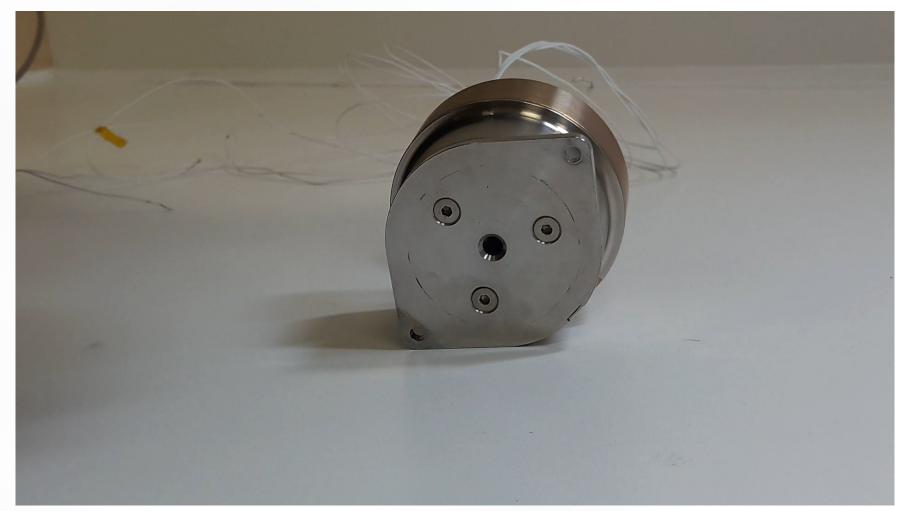
HDRM (REACT)

One shot

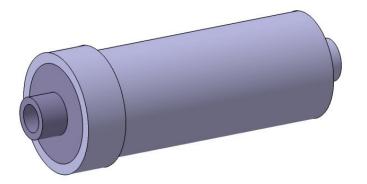

Non-explosive

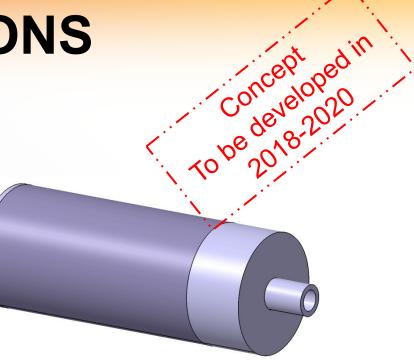
Low shock

Fully resettable by user



SPACE APPLICATIONS HDRM (REACT)

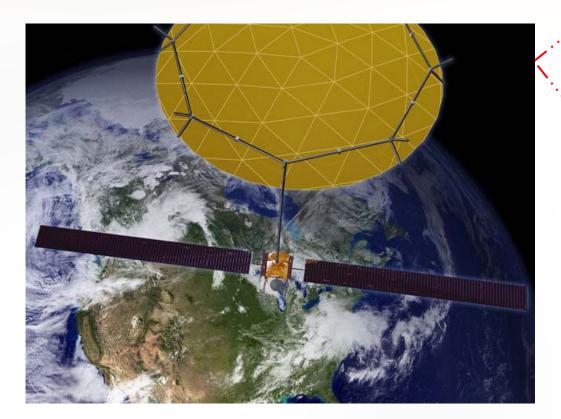




SPACE APPLICATIONS HDRM (REACT)

PROPULSION VALVES

Non-explosive


Simple, compact design

In-line configuration

Lightweight

Low volume

INTELIGENT STRUCTURES FOR DEPLOYMENT (COMPLIANT MECHANISMS)

Potential ns.

AERONAUTICS APPLICATIONS

Variable geometry structures and morphing for noise reduction and fuel savings:

Chevron

Fan Nozzles

Adaptable Wings

http://www.materialsforengineering.co.uk/engineering-materials-features/shapememory-alloy-allows-for-foldable-wings-without-actuators/170550/

Rotor Blades

Shock absorbers

https://www.slideshare.net/MohammadTanhaei/sma-41292540 https://www.sciencedirect.com/science/article/pii/S0921509306008227 *https://www.grc.nasa.gov/WWW/StructuresMaterials/AdvMet/research/shape_memory.html

AERONAUTICS APPLICATIONS

Shape memory alloy allows for foldable wings without actuators

Nasa has successfully applied a new technology in flight that allows aircraft to fold their wings to different angles while in the air.

The recent flight series, which took place at Nasa's Armstrong Flight Research Center in California, was part of the Spanwise Adaptive Wing project, or SAW. This project aims to validate the use of a cutting-edge, lightweight material that is able to fold the outer portions of aircraft wings and their control surfaces to optimal angles in flight.

SAW, which is a joint effort between Armstrong, Nasa's Glenn Research Center in Cleveland, Langley Research Center in Virginia, Boeing Research and Technology in St Louis and Seattle, and Area-I in Georgia, may produce multiple in-flight benefits to aircraft in the future, both subsonic and supersonic.

Folding wings in flight is an innovation that had been studied using aircraft in the past, including the North American XB-70 Valkyrie in the 1960s. However, the ability to fold wings in flight has always been dependent on heavy and bulky conventional motors and hydraulic systems, which can be cumbersome to the aircraft.

The SAW project intends to obtain a wide spectrum of aerodynamic benefits in flight by folding wings through the use of an innovative, lightweight material called shape memory alloy. This material is built into an actuator on the aircraft, which plays a vital role for moving parts on the airplane, where it has the ability to fold the outer portion of an aircraft's wings in flight without the strain of a heavy hydraulic system. Systems with this technology may weigh up to 80% less than traditional systems.

The recent series of flight tests at Armstrong successfully demonstrated the material's application and use, by folding the wings between 0 and 70° up and down in flight.

Many thanks!!

Questions?

AGUIMEA Passion for Technology